Prediction of the Crack Kinking in a Sandwich Composite Beam Subjected to Three Point Bending Using the J Integral Concept
ثبت نشده
چکیده
Composite materials utilizing the sandwich structure are a basic family of materials and possess a highly increasing use in modern industrial applications. Since the traditional approach to structural design and material selection tends to be replaced by the Fracture mechanics approach, it is worth understanding the way that the Fracture mechanics approach is applied. The traditional approach to structural design takes into account two variables which have to be in contrast: The applied or expected stresses and the Yield or Tensile strength. The Fracture mechanics approach [1,2] involves three important variables rather than two. The additional structural variable is the flaw size, and the Fracture Toughness replaces Yield or Tensile strength. This approach quantifies the critical combination of these three variables. In Fracture Mechanics there are two methods of studying a problem, the Stress Intensity Factors criterion and the Energy criterion. In this study we get involved with the Energy criterion and specifically with the J Contour integral calculation [3-5].
منابع مشابه
Investigating the Effectiveness of a Composite Patch on Repairing Pipes Subjected to Circumferential Cracks under Combined Loadings
The purpose of this study is to investigate bending moment and the axial load capacity of a pressurized pipe suffering from a through-wall circumferential crack repaired by a composite sleeve. The three-dimensional finite element method (FEM) was adopted to compute the results, and the failure assessment diagram (FAD) was employed to investigate the failure behavior of the repaired pipe. The fi...
متن کاملA Theoretical and Experimental Study of Failure Maps of Sandwich Beams with Composite Skins and Honeycomb Core
Failure maps of sandwich panels such as beam, plate and shell are of great importance in designing such structures. In this paper, failure maps of sandwich beams with composite skin and honeycomb core are obtained. The effect of transverse shear in skins and core and the effect of double walls of honeycomb core have been taken into account. Shear deformation of skins and core are assumed to be ...
متن کاملStatic Bending Analysis of Foam Filled Orthogonally Rib-Stiffened Sandwich Panels: A Mathematical Model
The current study presents a mathematical modeling for sandwich panels with foam filled orthogonally rib-stiffened core using Heaviside distribution functions. The governing equations of the static problem have been derived based on classical lamination theory. The present model contains three displacement variables considering all of the stiffness coefficients. A closed form solution using Gal...
متن کاملDelamination of Two-Dimensional Functionally Graded Multilayered Non-Linear Elastic Beam - an Analytical Approach
Delamination fracture of a two-dimensional functionally graded multilayered four-point bending beam that exhibits non-linear behaviour of the material is analyzed. The fracture is studied analytically in terms of the strain energy release rate. The beam under consideration has an arbitrary number of layers. Each layer has individual thickness and material properties. A delamination crack is loc...
متن کاملA Quasi-3D Polynomial Shear and Normal Deformation Theory for Laminated Composite, Sandwich, and Functionally Graded Beams
Bending analyses of isotropic, functionally graded, laminated composite, and sandwich beams are carried out using a quasi-3D polynomial shear and normal deformation theory. The most important feature of the proposed theory is that it considers the effects of transverse shear and transverse normal deformations. It accounts for parabolic variations in the strain/stress produced by transverse shea...
متن کامل